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Physics Classroom

Hermite Polynomials: A Heuristic
Approach

S.V.M. Satyanarayana∗

Abstract. In this note, I present different aspects of Hermite Polynomials derived from a
heuristic point of view. Firstly, I will present a derivation of the generating function of the
Hermite Polynomials given first few polynomials.

1. Generating Function
First four Hermite polynomials are given by

H0(x) = 1 (1)
H1(x) = 2x (2)
H2(x) = 4x2 −2 (3)
H3(x) = 8x3 −12x (4)

Here, we assume these polynomials as given, later in the note, I will present a simple
method to derive them.
1.1. Recurrence relation by inspection—Notice that H2(x) can be written in terms

of H1(x) and H0(x), namely,

H2(x) = 2xH1(x)−2H0(x) (5)

Now let us attempt to write H3(x) in terms of H2(x) and H1(x)

H3(x) = 2xH2(x)−4H1(x) (6)

Notice that the above two equations can be rewritten as follows:

H2(x) = 2xH1(x)−2(1)H0(x) (7)
H3(x) = 2xH2(x)−2(2)H1(x) (8)

From this you can easily recognize that the multiplier in the bracket of the second term in
the right hand side is same as the subscript of the Hermite polynomial in the first term of
the right hand side. We can generalize a recurrence relation, by inspection as

Hn+1 = 2xHn(x)−2nHn−1(x) (9)
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1.2. Derivation of generating function—Hn(x), n = 0,1,2, · · · is a sequence of
polynomials for −∞ < x < ∞. The generating function for generating the sequence of these
polynomials can be defined as

F(x, t) =
∞

∑
n=0

tn

n!
Hn(x) (10)

Since each member of the sequence of polynomials is defined over −∞ < x < ∞, dividing
by n! will ensure the convergence of the series on the right hand side of the above equation
for all x. Here t is a real parameter.
To obtain the generating fuction F(x, t), multiply each term of eq. (9) with tn/n! and sum

over all n from 0 to ∞. We have
∞

∑
n=0

tn

n!
Hn+1(x) = 2x

∞

∑
n=0

tn

n!
Hn(x)−2

∞

∑
n=0

n
tn

n!
Hn−1(x) (11)

Observe that the first term of the right hand side of eq.(11) is 2xF(x, t) by definition, see
eq.(10).
Consider the second term on the right hand side of the eq.(11),

2
∞

∑
n=0

n
tn

n!
Hn−1(x) = 2

∞

∑
n=1

n
tn

n!
Hn−1(x) (12)

= 2
∞

∑
m=0

(m+1)
tm+1

(m+1)!
Hm(x) (13)

= 2t
∞

∑
m=0

tm

m!
Hm(x) (14)

= 2tF(t,x) (15)

The sum in the first equation starts from n = 1 since n = 0 term in zero. We set n−1 = m
in the second equation. In the third equation (m+ 1) in the numerator is cancelled with
the same factor in (m+1)! in the denominator, leaving m! in the denominator. We get the
result by taking t outside the sum.
Consider the sum in the left hand side of eq.(11)

∞

∑
n=0

tn

n!
Hn+1(x) =

∞

∑
m=1

tm−1

(m−1)!
Hm(x) (16)

=
∞

∑
m=1

m
tm−1

m!
Hm(x) (17)

=
∞

∑
m=0

m
tm−1

m!
Hm(x) (18)

=
∂

∂ t

∞

∑
m=0

tm

m!
Hm(x) (19)

=
∂F(t,x)

∂ t
(20)

In the first equation, we set n+1 = m. We get second equation by multiplying and dividing
by m. We extend the sum from m = 0 in third equation since that term is anyway zero. We
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can write the summand in third equation as a derivative with respect to t as you can see in
fourth equation. The sum is the generating function as per definition, as can be seen in fifth
equation.
Now eq.(11) can be recast as a first order differential equation for generating function,

given by
∂F(t,x)

∂ t
= (2x−2t)F(t,x) (21)

Solving the above differential equation, we get the generating function for Hermite polyno-
mials as

F(t,x) = e2tx−t2 (22)

2. Rodriguez Formula
Given the generating fuction F(t,x), we can expand it in Taylor series at t = 0.

F(t,x) =
∞

∑
n=0

tn

n!
∂ n

∂ tn F(t,x)|t=0 (23)

Comparing eq.(23) and eq.(10) we can obtain Hermite polynomials by successive differen-
tiation of generating function evaluated at t = 0,

Hn(x) =
∂ n

∂ tn F(t,x)|t=0 (24)

Substituting the generating function from eq.(22) in eq.(24), we get

Hn(x) =
∂ n

∂ tn e2tx−t2 |t=0 (25)

Add and subtract x2 in the power of the exponential to complete the square, we get

Hn(x) =
∂ n

∂ tn e2tx−t2+x2−x2 |t=0 (26)

This equation can be written as

Hn(x) = ex2 ∂ n

∂ tn e−(t−x)2 |t=0 (27)

Notice that ∂/∂ t of e−(t−x)2 is same as −∂/∂x of the same function. Thus we have

Hn(x) = (−1)nex2 ∂ n

∂xn e−(t−x)2 |t=0 (28)

In the above equation, since the derivative is with respect to x, we can substitute t = 0 even
before differentiating. We get by setting t = 0,

Hn(x) = (−1)nex2 dn

dxn e−x2 (29)

Equation (29) is called theRodriguez formula and can be used to obtainHermite polynomials
by successive differentiation.
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3. Hermite Polynomials
In this section, I will present a heuristic method to obtain the first four Hermite polynomials
by using linear algebraic techniques.1
Let us represent a polynomial of degree 3, namely f (x) = a0 +a1x+a2x2 +a3x3 as a

column vector given by

f =


a0

a1

a2

a3

 (30)

As we know that d
dx f (x) = a1 +2a2x+3a3x2, we can write

d
dx


a0

a1

a2

a3

=


a1

2a2

3a3

0

 (31)

Differential operator d/dx has the following matrix representation.

d
dx

→


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 (32)

Similarly, we have d2

dx2 f (x) = 2a2 + 6a3x and the second derivative is represented by a
matrix

d2

dx2 →


0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0

 (33)

Further, x d
dx f (x) = a1x+2a2x2 +3a3x3 and the corresponding matrix is given by

x
d
dx

→


0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

 (34)

Let us now obtain a matrix corresponding to a differential operator

L̂ =
d2

dx2 −2x
d
dx

(35)

and the matrix is

L̂ →


0 0 2 0
0 −2 0 6
0 0 −4 0
0 0 0 −6

 (36)
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The matrix corresponding this operator is upper triangular and eigenvalues can be read
out. We can see for n = 0,1,2,3

λn =−2n (37)

Note that (L̂+2n)y = 0 is the differential equation for Hermite polynomials. That implies we
can get Hermite polynomials by finding out the eigenvectors of the matrix corresponding to
the operator L̂.
Eigenvectors corresponding to λn =−2n,n = 0,1,2,3 respectively are

v0 =


1
0
0
0

 , v1 =


0
1
0
0

 , v2 =


1
0
−2
0

 , v3 =


0
3
0
−2

 (38)

Representing these eigenvectors as polynomials, we get

f0(x) = 1, f1(x) = x, f2(x) = 1−2x, f3(x) = 3x−2x3 (39)

We get Hermite polynomials if they are normalized such that the highest power in nth degree
polynomial is (2x)n. That is Hn(x) = An fn(x), where A0 = 1, A1 = 2, A2 =−2, A3 =−4. We
get

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 −2, H3(x) = 8x3 −12x (40)

Notes and References
1 H. Beker, Special polynomials by matrix algebra, Am. J. Phys. 69 812 (1998)
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